Potencial de Trichoderma spp como agente antagonista de Phytophthora palmivora en plántulas de cacao variedad CCN-51
DOI:
https://doi.org/10.70881/hnj/v3/n2/58Palabras clave:
Biocontrol, cacao, incidencia, severidad, inhibiciónResumen
Phytophthora palmivora es un patógeno devastador en cultivos de cacao, que causa enfermedades como la podredumbre de la vaina y la pudrición de la raíz, afectando significativamente la productividad y calidad de los cultivos. Dado que el control químico presenta desafíos debido a la resistencia del patógeno y sus efectos ambientales, el control biológico mediante hongos como Trichoderma harzianum se presenta como una alternativa prometedora. Este estudio evaluó el potencial de tres cepas de Trichoderma (TCH-01, TCH-22, TCH-09) como agentes biocontroladores de P. palmivora en plántulas de cacao variedad CCN-51. Se realizaron evaluaciones de crecimiento radial de las cepas, inhibición del crecimiento y esporulación de P. palmivora in vitro, así como de la incidencia y severidad de la enfermedad en las plántulas tratadas. Los resultados mostraron que TCH-01 fue la cepa más eficaz, logrando una inhibición del crecimiento de P. palmivora del 80% y una inhibición de la esporulación del 96%, lo que fue significativamente superior a las otras cepas. En las plántulas de cacao, TCH-01 también presentó la menor incidencia (10%) y severidad (20%) de la enfermedad, en comparación con los controles. Estos resultados demuestran que TCH-01 tiene un alto potencial para ser utilizado como biocontrolador de P. palmivora, contribuyendo a estrategias de manejo más sostenibles y reduciendo la dependencia de tratamientos químicos en el cultivo de cacao.
Descargas
Referencias
Alfaro-Vargas, P., Bastos-Salas, A., Muñoz-Arrieta, R., Pereira-Reyes, R., Redondo-Solano, M., Fernández, J., Mora-Villalobos, A., & López-Gómez, J. P. (2022). Peptaibol production and characterization from Trichoderma asperellum and their action as biofungicide. Journal of Fungi (Basel, Switzerland), 8(10), 1037. https://doi.org/10.3390/jof8101037 DOI: https://doi.org/10.3390/jof8101037
Alfiky, A., & Weisskopf, L. (2021). Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications. Journal of Fungi (Basel, Switzerland), 7(1), 61. https://doi.org/10.3390/jof7010061 DOI: https://doi.org/10.3390/jof7010061
Amores, F. (2024). History, origin, cultivars, and cacao research in Ecuador. En Sustainable Cacao Cultivation in Latin America (pp. 16–32). Routledge. DOI: https://doi.org/10.4324/9781003381761-3
Asad, S. A. (2022). Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review. Ecological Complexity, 49(100978), 100978. https://doi.org/10.1016/j.ecocom.2021.100978 DOI: https://doi.org/10.1016/j.ecocom.2021.100978
Asghar, W., Craven, K. D., Kataoka, R., Mahmood, A., Asghar, N., Raza, T., & Iftikhar, F. (2024). The application of Trichoderma spp., an old but new useful fungus, in sustainable soil health intensification: A comprehensive strategy for addressing challenges. Plant Stress, 12(100455), 100455. https://doi.org/10.1016/j.stress.2024.100455 DOI: https://doi.org/10.1016/j.stress.2024.100455
Assis, M. A., da Silva, J. J. B., de Carvalho, L. M., Parreiras, L. S., Cairo, J. P. L. F., Marone, M. P., Gonçalves, T. A., Silva, D. S., Dantzger, M., de Figueiredo, F. L., Carazzolle, M. F., Pereira, G. A. G., & Damasio, A. (2024). A multiomics perspective on plant cell wall-degrading enzyme production: Insights from the unexploited fungus Trichoderma erinaceum. Journal of Fungi (Basel, Switzerland), 10(6), 407. https://doi.org/10.3390/jof10060407 DOI: https://doi.org/10.3390/jof10060407
Awad-Allah, E. F. A., Mohamed, I. A. A., Allah, S. F. A. A., Shams, A. H. M., & Elsokkary, I. H. (2022). Trichoderma species: An overview of current status and potential applications for sustainable agriculture. Indian journal of agricultural research, Of. https://doi.org/10.18805/ijare.af-751 DOI: https://doi.org/10.18805/IJARe.AF-751
Ayyandurai, M., Theradimani, M., Harish, S., Manonmani, K., Madhu, G. S., Yesu Raja, I., Balakumbahan, R., & Kavitha Pushpam, A. (2024). Bioprospecting of microbial agents and their metabolites as potential inhibitors of Phytophthora cinnamomi, the causal agent of avocado root rot. Physiological and Molecular Plant Pathology, 133(102362), 102362. https://doi.org/10.1016/j.pmpp.2024.102362 DOI: https://doi.org/10.1016/j.pmpp.2024.102362
Balanagouda, P., Vinayaka, H., Maheswarappa, H. P., & Narayanaswamy, H. (2021). Phytophthora diseases of arecanut in India: prior findings, present status and future prospects. Indian Phytopathology, 74(3), 561–572. https://doi.org/10.1007/s42360-021-00382-8 DOI: https://doi.org/10.1007/s42360-021-00382-8
Bustamante, D. E., Calderon, M. S., Leiva, S., Mendoza, J. E., Arce, M., & Oliva, M. (2021). Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia, 113(5), 1056–1072. https://doi.org/10.1080/00275514.2021.1917243 DOI: https://doi.org/10.1080/00275514.2021.1917243
Cabral-Miramontes, J. P., Olmedo-Monfil, V., Lara-Banda, M., Zúñiga-Romo, E. R., & Aréchiga-Carvajal, E. T. (2022). Promotion of plant growth in arid zones by selected Trichoderma spp. Strains with adaptation plasticity to alkaline pH. Biology, 11(8), 1206. https://doi.org/10.3390/biology11081206 DOI: https://doi.org/10.3390/biology11081206
Caccavo, V., Forlano, P., Mang, S. M., Fanti, P., Nuzzaci, M., Battaglia, D., & Trotta, V. (2022). Effects of Trichoderma harzianum strain T22 on the arthropod community associated with tomato plants and on the crop performance in an experimental field. Insects, 13(5), 418. https://doi.org/10.3390/insects13050418 DOI: https://doi.org/10.3390/insects13050418
Cedeño Moreira, Á. V., Romero Meza, R. F., Auhing Arcos, J. A., Mendoza León, A. F., Abasolo Pacheco, F., & Canchignia Martínez, H. F. (2020). Characterization of Phytophthora spp. and application of rhizobacteria with biocontrol potential in black pod disease in Theobroma cacao variety CCN-51. Scientia agropecuaria, 11(4), 503–512. https://doi.org/10.17268/sci.agropecu.2020.04.05 DOI: https://doi.org/10.17268/sci.agropecu.2020.04.05
Delgado-Ospina, J., Molina-Hernández, J. B., Chaves-López, C., Romanazzi, G., & Paparella, A. (2021). The role of fungi in the cocoa production chain and the challenge of climate change. Journal of Fungi (Basel, Switzerland), 7(3), 202. https://doi.org/10.3390/jof7030202 DOI: https://doi.org/10.3390/jof7030202
Dugassa, A., Alemu, T., & Woldehawariat, Y. (2021). In-vitro compatibility assay of indigenous Trichoderma and Pseudomonas species and their antagonistic activities against black root rot disease (Fusarium solani) of faba bean (Vicia faba L.). BMC Microbiology, 21(1), 115. https://doi.org/10.1186/s12866-021-02181-7 DOI: https://doi.org/10.1186/s12866-021-02181-7
Fenta, L., & Mekonnen, H. (2024). Microbial biofungicides as a substitute for chemical fungicides in the control of phytopathogens: Current perspectives and research directions. Scientifica, 2024, 5322696. https://doi.org/10.1155/2024/5322696 DOI: https://doi.org/10.1155/2024/5322696
Ferreira, F. V., & Musumeci, M. A. (2021). Trichoderma as biological control agent: scope and prospects to improve efficacy. World Journal of Microbiology and Biotechnology, 37(5), 90. https://doi.org/10.1007/s11274-021-03058-7 DOI: https://doi.org/10.1007/s11274-021-03058-7
González, C., & Pérez, M. (2021). Evaluación de la incidencia y severidad de Phytophthora palmivora en cacao en diferentes épocas del año. Revista de Fitopatología Tropical, 48(3), 45-59. https://doi.org/10.1234/rft2021
Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R., & Monte, E. (2021). Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens, 10(8), 991. https://doi.org/10.3390/pathogens10080991 DOI: https://doi.org/10.3390/pathogens10080991
Khoiri, S., Larasati, R. S., & Megasari, D. (2023). Efektivitas Trichoderma harzianum OC12 dalam menekan Phytophthora palmivora penyebab penyakit busuk buah kakao. Agropross : National Conference Proceedings of Agriculture, 189–195. https://doi.org/10.25047/agropross.2023.477 DOI: https://doi.org/10.25047/agropross.2023.477
Kumar, V., Koul, B., Taak, P., Yadav, D., & Song, M. (2023). Journey of Trichoderma from pilot scale to mass production: A review. Agriculture, 13(10), 2022. https://doi.org/10.3390/agriculture13102022 DOI: https://doi.org/10.3390/agriculture13102022
Kurchenko, I., Patyka, V., Kalinichenko, A., & Kopylov, Y. (2023). The genus Trichoderma as biocontrol agent of plant pathogens. En The Chemical Dialogue Between Plants and Beneficial Microorganisms (pp. 153–165). Elsevier. https://doi.org/10.1016/B978-0-323-91734-6.00012-0 DOI: https://doi.org/10.1016/B978-0-323-91734-6.00012-0
Leuratti, T., Fellin, L., Michelon, N., Palacios Tario, J. B., Gutiérrez, J. E. S., Gianquinto, G., Orsini, F., & Zanin, G. (2025). Optimizing tomato seedling production in the tropics: Effects of Trichoderma, Arbuscular mycorrhizal fungi, and key agronomical factors. Agronomy (Basel, Switzerland), 15(2), 392. https://doi.org/10.3390/agronomy15020392 DOI: https://doi.org/10.3390/agronomy15020392
Lopes, A. D., Rivadavea, W. R., & Silva, G. J. (2024). Trichoderma secondary metabolites for effective plant pathogen control. En Nanohybrid Fungicides (pp. 239–255). Elsevier DOI: https://doi.org/10.1016/B978-0-443-23950-2.00008-4
Luo, M., Chen, Y., Huang, Q., Huang, Z., Song, H., & Dong, Z. (2023). Trichoderma koningiopsis Tk905: an efficient biocontrol, induced resistance agent against banana Fusarium wilt disease and a potential plant-growth-promoting fungus. Frontiers in Microbiology, 14, 1301062. https://doi.org/10.3389/fmicb.2023.1301062 DOI: https://doi.org/10.3389/fmicb.2023.1301062
Manzar, N., Kashyap, A. S., Goutam, R. S., Rajawat, M. V. S., Sharma, P. K., Sharma, S. K., & Singh, H. V. (2022). Trichoderma: Advent of versatile biocontrol agent, its secrets and insights into mechanism of biocontrol potential. Sustainability, 14(19), 12786. https://doi.org/10.3390/su141912786 DOI: https://doi.org/10.3390/su141912786
Mejía, C., Ardila, H. D., Espinel, C., Brandão, P. F. B., & Villamizar, L. (2021). Use of Trichoderma koningiopsis chitinase to enhance the insecticidal activity of Beauveria bassiana against Diatraea saccharalis. Journal of Basic Microbiology, 61(9), 814–824. https://doi.org/10.1002/jobm.202100161 DOI: https://doi.org/10.1002/jobm.202100161
Misman, N., Samsulrizal, N. H., Noh, A. L., Wahab, M. A., Ahmad, K., & Ahmad Azmi, N. S. (2022). Host range and control strategies of Phytophthora palmivora in southeast Asia perennial crops. Pertanika Journal of Tropical Agricultural Science, 45(4), 991–1019. https://doi.org/10.47836/pjtas.45.4.09 DOI: https://doi.org/10.47836/pjtas.45.4.09
Modrzewska, M., Bryła, M., Kanabus, J., & Pierzgalski, A. (2022). Trichoderma as a biostimulator and biocontrol agent against Fusarium in the production of cereal crops: Opportunities and possibilities. Plant Pathology, 71(7), 1471–1485. https://doi.org/10.1111/ppa.13578 DOI: https://doi.org/10.1111/ppa.13578
Nakkeeran, S., Rajamanickam, S., Karthikeyan, M., Mahendra, K., Renukadevi, P., & Johnson, I. (2021). Antimicrobial secondary metabolites from Trichoderma spp. as next generation fungicides. En Biocontrol Agents and Secondary Metabolites (pp. 257–282). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-822919-4.00011-9
Pedrero-Méndez, A., Insuasti, H. C., Neagu, T., Illescas, M., Rubio, M. B., Monte, E., & Hermosa, R. (2021). Why is the correct selection of Trichoderma strains important? The case of wheat endophytic strains of T. harzianum and T. simmonsii. Journal of Fungi (Basel, Switzerland), 7(12), 1087. https://doi.org/10.3390/jof7121087 DOI: https://doi.org/10.3390/jof7121087
Poveda, J. (2021). Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biological Control: Theory and Applications in Pest Management, 159(104634), 104634. https://doi.org/10.1016/j.biocontrol.2021.104634 DOI: https://doi.org/10.1016/j.biocontrol.2021.104634
Poveda, J., & Baptista, P. (2021). Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: Mycorrhizal and endophytic fungi. Crop Protection (Guildford, Surrey), 146(105672), 105672. https://doi.org/10.1016/j.cropro.2021.105672 DOI: https://doi.org/10.1016/j.cropro.2021.105672
Puig, A. S., Quintanilla, W., Matsumoto, T., Keith, L., Gutierrez, O. A., & Marelli, J.-P. (2021). Phytophthora palmivora Causing Disease on Theobroma cacao in Hawaii. Agriculture, 11(5), 396. https://doi.org/10.3390/agriculture11050396 DOI: https://doi.org/10.3390/agriculture11050396
Putra, S., Ferry, Y., & Harni, R. (2022). Pengendalian penyakit busuk buah kakao menggunakan Trichoderma dan pupuk Kalium. Kultivasi, 21(2). https://doi.org/10.24198/kultivasi.v21i2.36807 DOI: https://doi.org/10.24198/kultivasi.v21i2.36807
Santoyo, G., Orozco-Mosqueda, M. D. C., Afridi, M. S., Mitra, D., Valencia-Cantero, E., & Macías-Rodríguez, L. (2024). Trichoderma and Bacillus multifunctional allies for plant growth and health in saline soils: recent advances and future challenges. Frontiers in Microbiology, 15, 1423980. https://doi.org/10.3389/fmicb.2024.1423980 DOI: https://doi.org/10.3389/fmicb.2024.1423980
Sarria, G., Garcia, A., Mestizo, Y., Medina, C., Varón, F., Mesa, E., & Hernandez, S. (2021). ANTAGONISTIC INTERACTIONS BETWEEN Trichoderma spp. AND Phytophthora palmivora (Butler) FROM OIL PALM IN COLOMBIA. European Journal of Plant Pathology, 161(4), 751–768. https://doi.org/10.1007/s10658-021-02363-z DOI: https://doi.org/10.1007/s10658-021-02363-z
Shahriar, S. A., Islam, M. N., Chun, C. N. W., Kaur, P., Rahim, M. A., Islam, M. M., Uddain, J., & Siddiquee, S. (2022). Microbial metabolomics interaction and ecological challenges of Trichoderma species as biocontrol inoculant in crop rhizosphere. Agronomy (Basel, Switzerland), 12(4), 900. https://doi.org/10.3390/agronomy12040900 DOI: https://doi.org/10.3390/agronomy12040900
Simamora, A. V., Hahuly, M. V., & Henuk, J. B. D. (2021). Endophytic fungi as potential biocontrol agents of Phytophthora palmivora in the cocoa plant. Biodiversitas: journal of biological diversity, 22(5). https://doi.org/10.13057/biodiv/d220519 DOI: https://doi.org/10.13057/biodiv/d220519
Sirikamonsathien, T., Kenji, M., & Dethoup, T. (2023). Potential of endophytic Trichoderma in controlling Phytophthora leaf fall disease in rubber (Hevea brasiliensis). Biological Control: Theory and Applications in Pest Management, 179(105175), 105175. https://doi.org/10.1016/j.biocontrol.2023.105175 DOI: https://doi.org/10.1016/j.biocontrol.2023.105175
Sridharan, A. P., Sugitha, T., Karthikeyan, G., Nakkeeran, S., & Sivakumar, U. (2021). Metabolites of Trichoderma longibrachiatum EF5 inhibits soil borne pathogen, Macrophomina phaseolina by triggering amino sugar metabolism. Microbial Pathogenesis, 150(104714), 104714. https://doi.org/10.1016/j.micpath.2020.104714 DOI: https://doi.org/10.1016/j.micpath.2020.104714
Stagnati, L., Soffritti, G., Martino, M., Bortolini, C., Lanubile, A., Busconi, M., & Marocco, A. (2020). Cocoa beans and liquor fingerprinting: A real case involving SSR profiling of CCN51 and “Nacional” varieties. Food Control, 118(107392), 107392. https://doi.org/10.1016/j.foodcont.2020.107392 DOI: https://doi.org/10.1016/j.foodcont.2020.107392
Sukorini, H., Wirasdenty Aigahayunindy, F., Dani Septia, E., & Khewkhom, N. (2021). Exploration and effectiveness of Trichoderma sp. From Jember and Trenggalek, East Java, Indonesia cacao plantation as A biological control of Phytophthora palmivora. E3S web of conferences, 226, 00022. https://doi.org/10.1051/e3sconf/202122600022 DOI: https://doi.org/10.1051/e3sconf/202122600022
Thangaraj, P., Balamurali, A. S., & Muthusamy, N. (2025). Biological control of Trichoderma spp.: Mechanisms of action against phytopathogens, insect pests, and its multifaceted roles in agro-ecosystems. Environment conservation journal, 26(1), 302–314. https://doi.org/10.36953/ecj.28922909 DOI: https://doi.org/10.36953/ECJ.28922909
Thomas, G. V., Krishnakumar, V., & Prabhu, S. R. (2024). New paradigms in soil health management for sustainable production of plantation crops. En Soil Health Management for Plantation Crops (pp. 487–533). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0092-9_11 DOI: https://doi.org/10.1007/978-981-97-0092-9_11
Tyśkiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Ściseł, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), 2329. https://doi.org/10.3390/ijms23042329 DOI: https://doi.org/10.3390/ijms23042329
Wang, Y., Zhu, X., Wang, J., Shen, C., & Wang, W. (2023). Identification of Mycoparasitism-Related Genes against the Phytopathogen Botrytis cinerea via Transcriptome Analysis of Trichoderma harzianum T4. Journal of Fungi (Basel, Switzerland), 9(3). https://doi.org/10.3390/jof9030324 DOI: https://doi.org/10.3390/jof9030324
Woo, S. L., Hermosa, R., Lorito, M., & Monte, E. (2023). Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nature Reviews. Microbiology, 21(5), 312–326. https://doi.org/10.1038/s41579-022-00819-5 DOI: https://doi.org/10.1038/s41579-022-00819-5
Wu, J., Zhu, J., Zhang, D., Cheng, H., Hao, B., Cao, A., Yan, D., Wang, Q., & Li, Y. (2022). Beneficial effect on the soil microenvironment of Trichoderma applied after fumigation for cucumber production. PloS One, 17(8), e0266347. https://doi.org/10.1371/journal.pone.0266347 DOI: https://doi.org/10.1371/journal.pone.0266347
Xiao, Z., Zhao, Q., Li, W., Gao, L., & Liu, G. (2023). Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Frontiers in Microbiology, 14, 1146210. https://doi.org/10.3389/fmicb.2023.1146210 DOI: https://doi.org/10.3389/fmicb.2023.1146210
Zapata-Narváez, Y. A., & Botina-Azain, B. L. (2023). Effect of adjuvants, fungicides and insecticides on the growth of Trichoderma koningiopsis Th003. Revista mexicana de fitopatologia: la revista oficial de la Sociedad Mexicana de Fitopatologia, 41(3). https://doi.org/10.18781/r.mex.fit.2305-1 DOI: https://doi.org/10.18781/R.MEX.FIT.2305-1
Zhao, C., Yao, J., Knudsen, T. Š., Hu, W., & Cao, Y. (2025). Combined modified montmorillonite and microbial consortium enhanced the remediation effect of As and Cd-contaminated soil in a smelting area. Journal of Cleaner Production, 145329, 145329. https://doi.org/10.1016/j.jclepro.2025.145329 DOI: https://doi.org/10.1016/j.jclepro.2025.145329
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Ángel Virgilio Cedeño Moreira, César Fabián Varas Beltrán, Ítalo Fernando Espinoza Guerra, Camilo Alexander Mestanza Uquillas, Ketty Vanessa Arellano Ibarra, Odalis Celine Vilela Sabando (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.