Impactos ambientales globales de los vertidos de aguas residuales y desechos derivados de la energía geotérmica en los ecosistemas naturales
DOI:
https://doi.org/10.70881/hnj/v3/n3/83Palabras clave:
geotermia, energía, agua residual, desechos, ecosistemasResumen
La presente revisión sistemática analiza los impactos ambientales de los vertidos de aguas residuales y desechos geotérmicos en ecosistemas naturales, con un enfoque en Ecuador, un país con crisis energética y alto potencial geotérmico. Se examinaron los efectos de los residuos geotérmicos sobre la calidad del agua, el equilibrio ecológico y el ciclo hidrológico, identificando riesgos clave. Se ilustra el funcionamiento de plantas geotérmicas, destacando puntos críticos como la extracción de vapor a 180°C, generación eléctrica y reinyección de fluidos, que puede inducir sismicidad. Los impactos incluyen pérdida de vegetación, emisiones de H₂S y CO₂, contaminación por metales pesados y alteración de hábitats. A pesar de su capacidad global de 19 GW en 2021, la geotermia enfrenta limitaciones en su desarrollo. Se proponen medidas de mitigación como tecnologías avanzadas de tratamiento y monitoreo continuo para garantizar un desarrollo sostenible
Descargas
Referencias
Allahvirdizadeh, P. (2020). A review on geothermal wells: Well integrity issues. Journal of Cleaner Production, 275, 124009. https://doi.org/10.1016/j.jclepro.2020.124009 DOI: https://doi.org/10.1016/j.jclepro.2020.124009
Ayieta, J. (2020). Geothermal Prospecting of Olkaria Dome Areas in Naivasha, Nakuru County Kenya using Gravity Method. Journal of Earth and Environmental Sciences. https://doi.org/10.29011/2577-0640.100190 DOI: https://doi.org/10.29011/2577-0640.100190
Bayer, P., Rybach, L., Blum, P., & Brauchler, R. (2013). Review on life cycle environmental effects of geothermal power generation. Renewable and Sustainable Energy Reviews, 26, 446-463. https://doi.org/10.1016/j.rser.2013.05.039 DOI: https://doi.org/10.1016/j.rser.2013.05.039
Bertani, R. (2016). Geothermal power generation in the world 2010–2014 update report. Geothermics, 60, 31-43. https://doi.org/10.1016/j.geothermics.2015.11.003 DOI: https://doi.org/10.1016/j.geothermics.2015.11.003
Bonalumi, D., Bombarda, P. A., & Invernizzi, C. M. (2017). Zero Emission Geothermal Flash Power Plant. Energy Procedia, 126, 698-705. https://doi.org/10.1016/j.egypro.2017.08.302 DOI: https://doi.org/10.1016/j.egypro.2017.08.302
Buscheck, T. A., Bielicki, J. M., & Randolph, J. B. (2017). CO2 Earth Storage: Enhanced Geothermal Energy and Water Recovery and Energy Storage. Energy Procedia, 114, 6870-6879. https://doi.org/10.1016/j.egypro.2017.03.1615 DOI: https://doi.org/10.1016/j.egypro.2017.03.1615
Buscheck, T. A., Elliot, T. R., Celia, M. A., Chen, M., Sun, Y., Hao, Y., Lu, C., Wolery, T. J., & Aines, R. D. (2013). Integrated Geothermal-CO2 Reservoir Systems: Reducing Carbon Intensity through Sustainable Energy Production and Secure CO2 Storage. Energy Procedia, 37, 6587-6594. https://doi.org/10.1016/j.egypro.2013.06.591 DOI: https://doi.org/10.1016/j.egypro.2013.06.591
Cui, G., Zhang, L., & Ren, S. (2017). Assessment of Heat Mining Rate for Geothermal Exploitation from Depleted High-temperature Gas Reservoirs via Recycling Supercritical CO 2. Energy Procedia, 105, 875-880. https://doi.org/10.1016/j.egypro.2017.03.404 DOI: https://doi.org/10.1016/j.egypro.2017.03.404
Dalla Longa, F., Nogueira, L. P., Limberger, J., Wees, J.-D. V., & Van Der Zwaan, B. (2020). Scenarios for geothermal energy deployment in Europe. Energy, 206, 118060. https://doi.org/10.1016/j.energy.2020.118060 DOI: https://doi.org/10.1016/j.energy.2020.118060
Di Michele, N., Talluri, L., Ungar, P., & Fiaschi, D. (2024). Energy, exergy and exergo-economic analyses of supercritical CO2 cycles for the exploitation of a geothermal resource in the Italian water dominant Amiata site. Energy, 313, 133743. https://doi.org/10.1016/j.energy.2024.133743 DOI: https://doi.org/10.1016/j.energy.2024.133743
DiPippo, R. (2015). Geothermal power plants: Evolution and performance assessments. Geothermics, 53, 291-307. https://doi.org/10.1016/j.geothermics.2014.07.005 DOI: https://doi.org/10.1016/j.geothermics.2014.07.005
Garapati, N., Adams, B. M., Bielicki, J. M., Schaedle, P., Randolph, J. B., Kuehn, T. H., & Saar, M. O. (2017). A Hybrid Geothermal Energy Conversion Technology—A Potential Solution for Production of Electricity from Shallow Geothermal Resources. Energy Procedia, 114, 7107-7117. https://doi.org/10.1016/j.egypro.2017.03.1852 DOI: https://doi.org/10.1016/j.egypro.2017.03.1852
Goosen, M., Mahmoudi, H., & Ghaffour, N. (2010). Water Desalination Using Geothermal Energy. Energies, 3(8), 1423-1442. https://doi.org/10.3390/en3081423 DOI: https://doi.org/10.3390/en3081423
Guo, Q., Cao, Y., Li, J., Zhang, X., & Wang, Y. (2015). Natural attenuation of geothermal arsenic from Yangbajain power plant discharge in the Zangbo River, Tibet, China. Applied Geochemistry, 62, 164-170. https://doi.org/10.1016/j.apgeochem.2015.01.017 DOI: https://doi.org/10.1016/j.apgeochem.2015.01.017
Gupta, N., & Vashistha, M. (2016). Carbon Dioxide Plume Geothermal (CPG) System-A New Approach for Enhancing Geothermal Energy Production and Deployment of CCUS on Large Scale in India. Energy Procedia, 90, 492-502. https://doi.org/10.1016/j.egypro.2016.11.216 DOI: https://doi.org/10.1016/j.egypro.2016.11.216
Gürbüz, E. Y., Güler, O. V., & Keçebaş, A. (2022). Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis. Renewable Energy, 185, 1110-1123. https://doi.org/10.1016/j.renene.2021.12.097 DOI: https://doi.org/10.1016/j.renene.2021.12.097
Holmslykke, H. D., Schovsbo, N. H., Kristensen, L., Weibel, R., & Nielsen, L. H. (2019). Characterising brines in deep Mesozoic sandstone reservoirs, Denmark. Geological Survey of Denmark and Greenland Bulletin, 43. https://doi.org/10.34194/GEUSB-201943-01-04 DOI: https://doi.org/10.34194/GEUSB-201943-01-04
Ivonne, G. A. Z. (2017). La sustentabilidad de la energía geotérmica y sus impactos ambientales.
Izquierdo Apolo, C., & Carcelen, J. (2022). Energía geotérmica en Ecuador, condiciones actuales y necesidad de una legislación específica. Iuris Dictio, 16. https://doi.org/10.18272/iu.v29i29.2527 DOI: https://doi.org/10.18272/iu.v29i29.2527
Juncu, D., Árnadóttir, Th., Geirsson, H., Guðmundsson, G. B., Lund, B., Gunnarsson, G., Hooper, A., Hreinsdóttir, S., & Michalczewska, K. (2020). Injection-induced surface deformation and seismicity at the Hellisheidi geothermal field, Iceland. Journal of Volcanology and Geothermal Research, 391, 106337. https://doi.org/10.1016/j.jvolgeores.2018.03.019 DOI: https://doi.org/10.1016/j.jvolgeores.2018.03.019
Kassem, M. A., Moscariello, A., & Hollmuller, P. (2025). Navigating risk in geothermal energy projects: A systematic literature review. Energy Reports, 13, 696-712. https://doi.org/10.1016/j.egyr.2024.12.052 DOI: https://doi.org/10.1016/j.egyr.2024.12.052
Kazmierczak, J., Marty, N., Weibel, R., Nielsen, L. H., & Holmslykke, H. D. (2022). The risk of scaling in Danish geothermal plants and its effect on the reservoir properties predicted by hydrogeochemical modelling. Geothermics, 105, 102542. https://doi.org/10.1016/j.geothermics.2022.102542 DOI: https://doi.org/10.1016/j.geothermics.2022.102542
Keil, S., Wassermann, J., & Megies, T. (2022). Estimation of ground motion due to induced seismicity at a geothermal power plant near Munich, Germany, using numerical simulations. Geothermics, 106, 102577. https://doi.org/10.1016/j.geothermics.2022.102577 DOI: https://doi.org/10.1016/j.geothermics.2022.102577
Kjeld, A., Bjarnadottir, H. J., & Olafsdottir, R. (2022). Life cycle assessment of the Theistareykir geothermal power plant in Iceland. Geothermics, 105, 102530. https://doi.org/10.1016/j.geothermics.2022.102530 DOI: https://doi.org/10.1016/j.geothermics.2022.102530
Kurek, K. A., Heijman, W., Van Ophem, J., Gędek, S., & Strojny, J. (2020). The impact of geothermal resources on the competitiveness of municipalities: Evidence from Poland. Renewable Energy, 151, 1230-1239. https://doi.org/10.1016/j.renene.2019.11.126 DOI: https://doi.org/10.1016/j.renene.2019.11.126
Limberger, J., Boxem, T., Pluymaekers, M., Bruhn, D., Manzella, A., Calcagno, P., Beekman, F., Cloetingh, S., & Van Wees, J.-D. (2018). Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization. Renewable and Sustainable Energy Reviews, 82, 961-975. https://doi.org/10.1016/j.rser.2017.09.084 DOI: https://doi.org/10.1016/j.rser.2017.09.084
Mahamoud Abdi, A., Murayama, T., Nishikizawa, S., Suwanteep, K., & Obuya Mariita, N. (2024). Determinants of community acceptance of geothermal energy projects: A case study on a geothermal energy project in Kenya. Renewable Energy Focus, 50, 100594. https://doi.org/10.1016/j.ref.2024.100594 DOI: https://doi.org/10.1016/j.ref.2024.100594
Ministerio de Energía y Minas. (2024). https://www.recursosyenergia.gob.ec/ecuador-consolida-la-produccion-electrica-a-partir-de-fuentes-renovables/
Miranda-Barbosa, E., Sigfússon, B., Carlsson, J., & Tzimas, E. (2017). Advantages from combining CCS with geothermal energy. Energy Procedia. DOI: https://doi.org/10.1016/j.egypro.2017.03.1794
Mott, A., Baba, A., Hadi Mosleh, M., Ökten, H. E., Babaei, M., Gören, A. Y., Feng, C., Recepoğlu, Y. K., Uzelli, T., Uytun, H., Morata, D., Yüksel, A., & Sedighi, M. (2022). Boron in geothermal energy: Sources, environmental impacts, and management in geothermal fluid. Renewable and Sustainable Energy Reviews, 167, 112825. https://doi.org/10.1016/j.rser.2022.112825 DOI: https://doi.org/10.1016/j.rser.2022.112825
Nath, F., Mahmood, M. N., Ofosu, E., & Khanal, A. (2024). Enhanced geothermal systems: A critical review of recent advancements and future potential for clean energy production. Geoenergy Science and Engineering, 243, 213370. https://doi.org/10.1016/j.geoen.2024.213370 DOI: https://doi.org/10.1016/j.geoen.2024.213370
Niknam, P. H., Talluri, L., Fiaschi, D., & Manfrida, G. (2020). Gas purification process in a geothermal power plant with total reinjection designed for the Larderello area. Geothermics, 88, 101882. https://doi.org/10.1016/j.geothermics.2020.101882 DOI: https://doi.org/10.1016/j.geothermics.2020.101882
Nkinyam, C. M., Ujah, C. O., Asadu, C. O., & Kallon, D. V. V. (2025). Exploring geothermal energy as a sustainable source of energy: A systemic review. Unconventional Resources, 6, 100149. https://doi.org/10.1016/j.uncres.2025.100149 DOI: https://doi.org/10.1016/j.uncres.2025.100149
Omodeo-Salé, S., Eruteya, O. E., Cassola, T., Baniasad, A., & Moscariello, A. (2020). A basin thermal modelling approach to mitigate geothermal energy exploration risks: The St. Gallen case study (eastern Switzerland). Geothermics, 87, 101876. https://doi.org/10.1016/j.geothermics.2020.101876 DOI: https://doi.org/10.1016/j.geothermics.2020.101876
Ozcelik, M. (2022). Environmental and social impacts of the increasing number of geothermal power plants (Büyük Menderes Graben—Turkey). Environmental Science and Pollution Research, 29(11), 15526-15538. https://doi.org/10.1007/s11356-021-16941-5 DOI: https://doi.org/10.1007/s11356-021-16941-5
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Raza, M. A., Al-Khasawneh, M. A., Alharthi, Y. Z., Faheem, M., Haider, R., & Kumar, L. (2025). Power generation expansion planning with high penetration of geothermal energy – Potential, prospects and policy. Environmental and Sustainability Indicators, 26, 100614. https://doi.org/10.1016/j.indic.2025.100614 DOI: https://doi.org/10.1016/j.indic.2025.100614
Rivera Diaz, A., Kaya, E., & Zarrouk, S. J. (2016). Reinjection in geothermal fields − A worldwide review update. Renewable and Sustainable Energy Reviews, 53, 105-162. https://doi.org/10.1016/j.rser.2015.07.151 DOI: https://doi.org/10.1016/j.rser.2015.07.151
Røksland, M. (2017). Geothermal Energy Extraction from Abandoned Wells. Energy Procedia. DOI: https://doi.org/10.1016/j.egypro.2017.03.309
Rotich, I. K., Chepkirui, H., Musyimi, P. K., & Kipruto, G. (2024a). Geothermal energy in Kenya: Evaluating health impacts and environmental challenges. Energy for Sustainable Development, 82, 101522. https://doi.org/10.1016/j.esd.2024.101522
Rotich, I. K., Chepkirui, H., Musyimi, P. K., & Kipruto, G. (2024b). Geothermal energy in Kenya: Evaluating health impacts and environmental challenges. Energy for Sustainable Development, 82, 101522. https://doi.org/10.1016/j.esd.2024.101522 DOI: https://doi.org/10.1016/j.esd.2024.101522
Rudiyanto, B., Illah, I., Pambudi, N. A., Cheng, C.-C., Adiprana, R., Imran, M., Huat Saw, L., & Handogo, R. (2017). Preliminary analysis of dry-steam geothermal power plant by employing exergy assessment: Case study in Kamojang geothermal power plant, Indonesia. Case Studies in Thermal Engineering, 10, 292-301. https://doi.org/10.1016/j.csite.2017.07.006 DOI: https://doi.org/10.1016/j.csite.2017.07.006
Ruiz, E., Lacoue-Labarthe, T., Churlaud, C., Brault-Favrou, M., & Pascal, P.-Y. (2024). Mercury Accumulation and Transfer in Hydrothermal Coastal Environment: The Case of the Geothermal Plant of Bouillante. Archives of Environmental Contamination and Toxicology, 87(3), 209-221. https://doi.org/10.1007/s00244-024-01082-w DOI: https://doi.org/10.1007/s00244-024-01082-w
Santos, L., Dahi Taleghani, A., & Elsworth, D. (2022). Repurposing abandoned wells for geothermal energy: Current status and future prospects. Renewable Energy, 194, 1288-1302. https://doi.org/10.1016/j.renene.2022.05.138 DOI: https://doi.org/10.1016/j.renene.2022.05.138
Schade, J. (2017). Kenya 'Olkaria IV' Case Study Report: Human Rights Analysis of the Resettlement Process. (COMCAD Working Papers, 151). Bielefeld: Universität Bielefeld, Fak. für Soziologie, Centre on Migration, Citizenshipand Development (COMCAD). https://nbn-resolving.org/urn:nbn:de:0168-ssoar-51409-6
Sharmin, T., Khan, N. R., Akram, M. S., & Ehsan, M. M. (2023). A State-of-the-Art Review on Geothermal Energy Extraction, Utilization, and Improvement Strategies: Conventional, Hybridized, and Enhanced Geothermal Systems. International Journal of Thermofluids, 18, 100323. https://doi.org/10.1016/j.ijft.2023.100323 DOI: https://doi.org/10.1016/j.ijft.2023.100323
Smith, T., Awolayo, A. N., Grasby, S. E., & Tutolo, B. M. (2024). Investigation of geochemically induced permeability alteration in geothermal reservoirs and its implications for sustainable geothermal energy production. Applied Geochemistry, 175, 106193. https://doi.org/10.1016/j.apgeochem.2024.106193 DOI: https://doi.org/10.1016/j.apgeochem.2024.106193
Soltani, M., Moradi Kashkooli, F., Souri, M., Rafiei, B., Jabarifar, M., Gharali, K., & Nathwani, J. S. (2021a). Environmental, economic, and social impacts of geothermal energy systems. Renewable and Sustainable Energy Reviews, 140, 110750. https://doi.org/10.1016/j.rser.2021.110750
Soltani, M., Moradi Kashkooli, F., Souri, M., Rafiei, B., Jabarifar, M., Gharali, K., & Nathwani, J. S. (2021b). Environmental, economic, and social impacts of geothermal energy systems. Renewable and Sustainable Energy Reviews, 140, 110750. https://doi.org/10.1016/j.rser.2021.110750 DOI: https://doi.org/10.1016/j.rser.2021.110750
Tonkul, S., Baba, A., Demir, M. M., & Regenspurg, S. (2021). Characterization of Sb scaling and fluids in saline geothermal power plants: A case study for Germencik Region (Büyük Menderes Graben, Turkey). Geothermics, 96, 102227. https://doi.org/10.1016/j.geothermics.2021.102227 DOI: https://doi.org/10.1016/j.geothermics.2021.102227
Tyszer, M., Tomaszewska, B., & Bodzek, M. (2020). Comparison of the efficiency of micro-pollutant removal from geothermal water on a laboratory and a semi-industrial scale. Desalination and Water Treatment, 186, 155-164. https://doi.org/10.5004/dwt.2020.25466 DOI: https://doi.org/10.5004/dwt.2020.25466
Zachora-Buławska, A., Kędzior, R., & Operacz, A. (2024). Spent geothermal water discharge to rivers: Risk or environmental benefit? Science of The Total Environment, 954, 176527. https://doi.org/10.1016/j.scitotenv.2024.176527 DOI: https://doi.org/10.1016/j.scitotenv.2024.176527
Zarrouk, S. J., & Moon, H. (2014). Efficiency of geothermal power plants: A worldwide review. Geothermics, 51, 142-153. https://doi.org/10.1016/j.geothermics.2013.11.001 DOI: https://doi.org/10.1016/j.geothermics.2013.11.001
Zhou, C. (2014). Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles. Energy Conversion and Management, 81, 72-82. https://doi.org/10.1016/j.enconman.2014.02.007 DOI: https://doi.org/10.1016/j.enconman.2014.02.007
Zoromba, M. S., Abdel-Aziz, M. H., Attar, A., Bassyouni, M., Al-Qabandi, O. A., & Elhenawy, Y. (2025). Hybrid system for water desalination and electricity generation powered by geothermal energy. Energy Conversion and Management: X, 26, 100979. https://doi.org/10.1016/j.ecmx.2025.100979 DOI: https://doi.org/10.1016/j.ecmx.2025.100979
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Nahomy Ayala, Michelle Muñoz, Carlos Banchón (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
: