Composición química, pretratamiento, almacenamiento, esterilización y usos de la melaza como sustrato en fermentaciones: Una revisión global

Autores/as

DOI:

https://doi.org/10.70881/hnj/v3/n2/59

Palabras clave:

melaza de caña de azúcar, fermentación, microorganismos, bioproductos, aprovechamiento

Resumen

La melaza es un subproducto de la industria azucarera que contiene 40-60% (m/m) de azúcares. A lo largo de la última década se han producido biocombustibles, polisacáridos, oligosacáridos, ácidos orgánicos y enzimas a partir de la melaza mediante la ruta fermentativa, lo cual le imparten un conjunto de aplicaciones importantes en las industrias de alimentos, farmacéuticas y biotecnológicas. Sin embargo, debido a su difícil manejo en cuanto al almacenamiento, esterilización, empaque y transportación, la explotación y aprovechamiento comercial de la melaza aún no ha sido del todo aplicado a escala industrial para obtener bioproductos de alto valor agregado. Para una mejor comprensión de las aplicaciones de la melaza a escala industrial, resulta necesario comprender y conocer exhaustivamente cuál ha sido su empleo como sustrato para producir bioproductos, composición físico-química, métodos de pretratamiento aplicados a escala de laboratorio, condiciones de almacenamiento y la propuesta de procesos de esterilización a gran escala, los cuales no han sido tratados y resumidos en detalle hasta la fecha. En esta revisión se generalizan y discuten todas estas temáticas mediante la consulta de varias referencias bibliográficas actualizadas, con el fin de establecer una guía confiable, sistematizada y actualizada acerca de estos tópicos

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abreu-Cavalheiro, A., & Monteiro, G. (2013). Solving ethanol production problems with genetically modified yeast strains. Brazilian Journal of Microbiology, 44(3), 665-671. https://doi.org/10.1590/s1517-83822013000300001 DOI: https://doi.org/10.1590/S1517-83822013000300001

Acosta-Piantini, E., Rodríguez-Díez, E., Chavarri, M., López-de-Armentia, I., Villaran, M. C., & Lombraña, J. I. (2023). Preparation of Hydrolyzed Sugarcane Molasses as a Low-Cost Medium for the Mass Production of Probiotic Lactobacillus paracasei ssp. paracasei F19. Separations, 10, 33. https://doi.org/10.3390/separations10010033 DOI: https://doi.org/10.3390/separations10010033

Ali, S., Ikram-ul-Haq, Qadeer, M. A., & Iqbal, J. (2002). Production of citric acid by Aspergillus niger using cane molasses in a stirred fermentor. Electronic Journal of Biotechnology, 5(3), 258-271. https://www.scielo.cl/pdf/ejb/v5n3/a10.pdf DOI: https://doi.org/10.2225/vol5-issue3-fulltext-3

Almakki, A., Mirghani, M. E. S., & Kabbashi, N. A. (2019). Production of citric acid from sugarcane molasses by Aspergillus niger using submerged fermentation. Biological and Natural Resources Engineering Journal, 2(1), 47-55. DOI: https://doi.org/10.31436/cnrej.v2i1.31

Altun, R., Esim, N., Aykutoglu, G., Baltaci, M. O., Adiguzel, A., & Taskin, M. (2020). Production of linoleic acid-rich lipids in molasses-based medium by oleaginous fungus Galactomyces geotrichum TS61. Journal of Food Processing and Preservation, 00, e14518. https://doi.org/10.1111/jfpp.14518 DOI: https://doi.org/10.1111/jfpp.14518

Arshad, M., Hussain, T., Iqbal, M., & Abbas, M. (2017). Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian Journal of Microbiology, 48, 403-409. http://dx.doi.org/10.1016/j.bjm.2017.02.003 DOI: https://doi.org/10.1016/j.bjm.2017.02.003

Arshad, M., Khan, Z. M., Khalil-ur-Rehman, Shah, F. A., & Rajoka, M. I. (2008). Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Letters in Applied Microbiology, 47, 410-414. https://doi.org/10.1111/j.1472-765X.2008.02446.x DOI: https://doi.org/10.1111/j.1472-765X.2008.02446.x

Ashraf, S., Ali, S., & Ikram-ul-Haq. (2015). Acidic pre-treatment of sugarcane molasses for citric acid production by Aspergillus niger NG-4. International Journal of Current Microbiology and Applied Sciences, 4(6), 584-595.https://www.ijcmas.com/vol-4-6/Shazia%20Ashraf,%20et%20al .pdf

Attfield, P. (1997). Stress tolerance: The key to effective strains of industrial baker’s yeast. Nature Biotechnology, 15(13), 1351-1357. https://doi.org/10.1038/nbt1297-1351 DOI: https://doi.org/10.1038/nbt1297-1351

Azhar, S. H. M., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Faik, A. A. M., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52-61. http://dx.doi.org/10.1016/j.bbrep.2017.03.003 DOI: https://doi.org/10.1016/j.bbrep.2017.03.003

Baeyens, J., Kang, Q., Appels, L., Dewil, R., Lv, Y., & Tan, T. (2015). Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Science, 47, 60-88. doi:http://dx.doi.org/10.1016/j.pecs.2014.10.003 DOI: https://doi.org/10.1016/j.pecs.2014.10.003

Bakhiet, S. E. A., & Al-Mokhtar, E. A. I. (2015). Production of Citric Acid by Aspergillus niger Using Sugarcane Molasses as Substrate. Jordan Journal of Biological Sciences, 8(3), 211-215. https://jjbs.hu.edu.jo/files/v8n3/Paper%20Number%208m.pdf DOI: https://doi.org/10.12816/0026960

Barbosa, H. S., Silveira, E. d. A., Miranda, M., & Ernandes, J. R. (2016). Efficient very-high-gravity fermentation of sugarcane molasses by industrial yeast strains. Journal of the Institute of Brewing, 122, 329-333. https://doi.org/10.1002/jib.317 DOI: https://doi.org/10.1002/jib.317

Basso, L. C., Amorim, H. V. d., Oliveira, A. J. d., & Lopes, M. L. (2008). Yeast selectionfor fuel ethanol production inBrazil. FEMS Yeast Research, 8(7), 1155-1163. https://doi.org/10.1111/j.1567-1364.2008.00428.x DOI: https://doi.org/10.1111/j.1567-1364.2008.00428.x

Basso, T. O., Gomes, F. S., Lopes, M. L., Amorim, H. V. d., Eggleston, G., & Basso, L. C. (2014). Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie van Leeuwenhoek, 105(1), 169-177. https://doi.org/10.1007/s10482-013-0063-6 DOI: https://doi.org/10.1007/s10482-013-0063-6

Bento, H. B. S., Carvalho, A. K. F., Reis, C. E. R., & Castro, H. F. D. (2020). Single cell oil production and modification for fuel and food applications: Assessing the potential of sugarcane molasses as culture medium for filamentous fungus. Industrial Crops & Products, 145, 112141. https://doi.org/10.1016/j.indcrop.2020.112141 DOI: https://doi.org/10.1016/j.indcrop.2020.112141

Bhatti, Z. A., Rajput, M.-U.-H., Maitlo, G., Solangi, Z. A., & Shaikh, G. S. (2019). Impact of Storage Time, Rain and Quality of Molasses in the Production of Bioethanol. Mehran University Research Journal of Engineering & Technology, 38(4). https://doi.org/10.22581/muet1982.1904.14 DOI: https://doi.org/10.22581/muet1982.1904.14

Botros, H. W., Ahmed, A. S., Farag, S. S., & Hassan, I. A. (2012). Study on Ethanol Production from Sugar Cane Molasses by Using Irradiated Saccharomyces cerevisiae. J. Rad. Res. Appl. Sci., 5(2), 153-164. https://inis.iaea.org/records/7v36w-cs651

Chicaiza-Ortiz, C., Peñafiel-Arcos, P., Herrera-Feijoo, R. J., Ma, W., Logroño, W., Tian, H., & Yuan, W. (2024). Waste-to-Energy technologies for municipal solid waste management: Bibliometric review, life cycle assessment, and energy potential case study. Journal of Cleaner Production, 480, 143993. https://doi.org/10.1016/j.jclepro.2024.143993 DOI: https://doi.org/10.1016/j.jclepro.2024.143993

Della-Bianca, B. E., & Gombert, A. K. (2013). Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek, 104(6), 1083-1095. https://doi.org/10.1007/s10482-013-0030-2 DOI: https://doi.org/10.1007/s10482-013-0030-2

Doelle, M. B., & Doelle, H. W. (1990). Sugar-cane molasses fermentation by Zymomonas mobilis. Applied Micriobilogy and Biotechnology, 33, 31-35. https://link.springer.com/article/10.1007/BF00170565 DOI: https://doi.org/10.1007/BF00170565

Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J., & Gokhale, D. (2008). Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus delbrueckii subsp. delbrueckii Mutant Uc-3 in Batch Fermentation. Applied and Environmental Microbiology, 74(1), 333-335. https://doi.org/10.1128/AEM.01595-07 DOI: https://doi.org/10.1128/AEM.01595-07

El-Gamal, M. S., Desouky, S. E.-S., Abdel-Rahman, M. A., & Khattab, A.-R. M. (2018). High-Temperature Citric Acid Production from Sugar Cane Molasses using A Newly Isolated Thermotolerant Yeast Strain, Candida parapsilosis NH-3. International Journal of Advanced Research in Biological Sciences, 5(7), 187-211. http://dx.doi.org/10.22192/ijarbs.2018.05.07.015 DOI: https://doi.org/10.22192/ijarbs.2018.05.07.015

El-Gendy, N. S., Madian, H. R., & Amr, S. S. A. (2013). Design and Optimization of a Process for Sugarcane Molasses Fermentation by Saccharomyces cerevisiae Using Response Surface Methodology. International Journal of Microbiology, 2013, 1-9. http://dx.doi.org/10.1155/2013/815631 DOI: https://doi.org/10.1155/2013/815631

Eliodório, K. P., Cunha, G. C. d. G. e., Lino, F. S. d. O., Sommer, M. O. A., Gombert, A. K., Giudici, R., & Basso, T. O. (2023). Physiology of Saccharomyces cerevisiae during growth on industrial sugar cane molasses can be reproduced in a tailormade defined synthetic medium. Scientific Reports, 13, 10567. https://doi.org/10.1038/s41598-023-37618-8 DOI: https://doi.org/10.1038/s41598-023-37618-8

Fadl, K. S. H., Abbashar, O. E. S. A. A., & Musa, A. (2018). Utilization of Mash Treatment Unit for Sterilization and Clarification of Final Molasses in Ethanol Plant. International Journal of Photochemistry and Photobiology, 2(2), 49-57. https://doi.org/10.11648/j.ijpp.20180202.12

Garing, C. L., Abrigo, C. S., Pajares, I. G., & Elegado, F. B. (2018). Ethanol Fermentation Performance of Acid-Tolerant Saccharomyces cerevisiae TB3 in Sugarcane Molasses. Philippine Journal of Crop Science, Special Issue December 2018, 87-94. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20230191485

Gasmalla, M. A. A., Yang, R., Nikoo, M., & Man, S. (2012). Production of Ethanol from Sudanese Sugar Cane Molasses and Evaluation of Its Quality. Journal of Food Processing and Technology, 3(7), 163. https://doi.org/10.4172/2157-7110.1000163 DOI: https://doi.org/10.4172/2157-7110.1000163

González-Torres, M., Hernández-Rosas, F., Pacheco, N., Salinas-Ruiz, J., Herrera-Corredor, J. A., & Hernández-Martínez, R. (2024). Levan Production by Suhomyces kilbournensis Using Sugarcane Molasses as a Carbon Source in Submerged Fermentation. Molecules, 29, 1105. https://doi.org/10.3390/molecules29051105 DOI: https://doi.org/10.3390/molecules29051105

Gough, S., Flynn, O., Hack, C. J., & Marchant, R. (1996). Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: simplex optimisation of media supplements. Applied Microbiology and Biotechnology, 46, 187-190. https://link.springer.com/article/10.1007/s002530050803 DOI: https://doi.org/10.1007/s002530050803

Hawaz, E., Tafesse, M., Tesfaye, A., Kiros, S., Beyene, D., Kebede, G., . Boekhout, T., Groenwald, M., Theelen, B., Degefe, A., Degu, S., Admasu, A., Hunde, B., & Muleta, D. (2023). Optimization of bioethanol production from sugarcane molasses by the response surface methodology using Meyerozyma caribbica isolate MJTm3. Annals of Microbiology, 73, 2. https://doi.org/10.1186/s13213-022-01706-3 DOI: https://doi.org/10.1186/s13213-022-01706-3

Hawaz, E., Tafesse, M., Tesfaye, A., Kiros, S., Beyene, D., Kebede, G., Boekhout, T., Groenwald, M., Theelen, B., Degefe, A., Degu, S., Admasu, A., Hunde, B., & Muleta, D. (2024). Bioethanol production from sugarcane molasses by cofermentation of Saccharomyces cerevisiae isolate TA2 and Wickerhamomyces anomalus isolate HCJ2F19. Annals of Microbiology, 74, 13. https://doi.org/10.1186/s13213-024-01757-8 DOI: https://doi.org/10.1186/s13213-024-01757-8

Jacques, K. A., Lyons, T. P., & Kelsall, D. R. (2003). The Alcohol Textbook (4th ed.). Nottingham, Nottingham University Press.

Jamir, L., Kumar, V., Kaur, J., Kumar, S., & Singh, H. (2021). Composition, valorization and therapeutical potential of molasses: a critical review. Environmental Technology Review, 10(1), 131-142. https://doi.org/10.1080/21622515.2021.1892203 DOI: https://doi.org/10.1080/21622515.2021.1892203

Jayaraman, P., Alex, A. M. A. L., Harikrishnan, S., Vinoth, S., & Logambal, R. (2017). Evaluation of Ethanol Production using Various Carbon Substrates by Sacharomyces cerevisiae and Schizosacharomyces bombe. Journal of Pure and Applied Microbiology, 11(3), 1469-1478. http://dx.doi.org/10.22207/JPAM.11.3.31 DOI: https://doi.org/10.22207/JPAM.11.3.31

Jiru, T. M., Steyn, L., Pohl, C., & Abate, D. (2018). Production of single cell oil from cane molasses by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 as a biodiesel feedstock. Chemistry Central Journal, 12(91), 1-7. https://doi.org/10.1186/s13065-018-0457-7 DOI: https://doi.org/10.1186/s13065-018-0457-7

Kartini, A. M., & Dhokhikah, Y. (2018). Bioethanol Production from Sugarcane Molasses with Simultaneous Saccharification and Fermentation (SSF) Method using Saccaromyces cerevisiae-Pichia stipitis Consortium. IOP Conf. Series: Earth and Environmental Science, 207, 012061. https://doi.org/10.1088/1755-1315/207/1/012061 DOI: https://doi.org/10.1088/1755-1315/207/1/012061

Khoja, A. H., Ali, E., Zafar, K., Ansari, A. A., Nawar, A., Qayyum, M., & Janjua, H. A. (2015). Comparative study of bioethanol production from sugarcane molasses by using Zymomonas mobilis and Saccharomyces cerevisiae. African Journal of Biotechnology, 14(31), 2455-2462. https://www.ajol.info/index.php/ajb/article/view/121392 DOI: https://doi.org/10.5897/AJB2015.14569

Khoja, A. H., Yahya, S. M., Nawar, A., Ansari, A. A., & Qayyum, M. (2018). Fermentation of Sugarcane Molasses Using Zymomonas Mobilis for Enhanced Bioethanol Production. Journal of Advanced Research in Applied Sciences and Engineering Technology, 11(1), 31-38. https://www.akademiabaru.com/doc/ARASETV11_N1_P31_38.pdf

Kopsahelis, N., Bosnea, L., Bekatorou, A., Tzia, C., & Kanellaki, M. (2012). Alcohol production from sterilized and non-sterilized molasses by Saccharomyces cerevisiae immobilized on brewer’s spent grains in two types of continuous bioreactor systems. Biomass and Bioenergy, 45, 87-94. https://doi.org/10.1016/j.biombioe.2012.05.015 DOI: https://doi.org/10.1016/j.biombioe.2012.05.015

Lino, F. S. d. O., Basso, T. O., & Sommer, M. O. A. (2018). A synthetic medium to simulate sugarcane molasses. Biotechnology for Biofuels, 11, 221. https://doi.org/10.1186/s13068-018-1221-x DOI: https://doi.org/10.1186/s13068-018-1221-x

Malik, H. (2016). Utilization of agro-industrial wastes for the biomass production of baker's yeast. [Master’s thesis, Punjab Agricultural University], Punjab Agricultural University. https://doi.org/10.13140/RG.2.2.30282.18886

Marim, R. A., Oliveira, A. C. C., Marquezoni, R. S., Servantes, J. P. R., Cardoso, B. K., Linde, G. A., Colauto, N. B., & Valle, J. S. (2016). Use of sugarcane molasses by Pycnoporus sanguineus for the production of laccase for dye decolorization. Genetics and Molecular Research, 15(4), 1-9. https://doi.org/10.4238/gmr15048972 DOI: https://doi.org/10.4238/gmr15048972

Marlinda, Mardhiyah, N., Irwan, M., & Ramli. (2019). Citric Acid Production From Molasses Use Biosynthesis Aspergillus Niger. International Journal of Scientific & Technology Research, 8(06), 357-360. https://www.ijstr.org/final-print/june2019/Citric-Acid-Production-From-Molasses-Use-Biosynthesis-Aspergillus-Niger.pdf

Mawarda, P. C., Endah, E. S., Ratnaningrum, D., Budiwati, T. A., Andayani, D. G. S., & Pudjiraharti, S. (2018). Antimicrobial activity of extracellular liquid obtained from molasses fermentation by Nocardia sp strain V1. IOP Conf. Series: Earth and Environmental Science, 160, 012011. https://doi.org/10.1088/1755-1315/160/1/012011 DOI: https://doi.org/10.1088/1755-1315/160/1/012011

Méndez-Romero, T., Vargas-Tah, A., Aguilar-Rivera, N., Lazaro-Mixteco, P. E., & Castro-Montoya, A. J. (2023). Sugarcane molasses-based biorefinery: Organic acids and ethanol production. Renewable Energy, Biomass & Sustainability, 5(1), 1-9. https://doi.org/10.56845/rebs.v5i1.78 DOI: https://doi.org/10.56845/rebs.v5i1.78

Naheed, N., Jamil, N., Hasnain, S., & Abbas, G. (2012). Biosynthesis of polyhydroxybutyrate in Enterobacter sp. SEL2 and Enterobacteriaceae bacterium sp. PFW1 using sugar cane molasses as media. African Journal of Biotechnology, 11(16), 3321-3332. https://doi.org/10.5897/AJB11.1405 DOI: https://doi.org/10.5897/AJB11.1405

Nehra, K. S., Jangra, M. R., Sharma, P., Aggarwal, M., Mishra, P., Bharti, R., Sachdeva, H., Poonia, P., & Jangra, S. (2021). Production of bioethanol from Sugarcane Juice, Molasses and Paddy Straw using Saccharomyces cerevisiae. Bioscience Biotechnology Research Communications, 14(2), 581-586. https://bbrc.in/wp-content/uploads/2021/05/BBRC_Vol_14_No_02_2021-22.pdf DOI: https://doi.org/10.21786/bbrc/14.2.22

Ni, Y., Wang, Y., & Sun, Z. (2012). Butanol Production from Cane Molasses by Clostridium saccharobutylicum DSM 13864: Batch and Semicontinuous Fermentation. Appl Biochem Biotechnol, 166, 1896–1907. https://doi.org/10.1007/s12010-012-9614-y DOI: https://doi.org/10.1007/s12010-012-9614-y

Nishida, O., Kuwazaki, S., Suzuki, C., & Shima, J. (2004). Superior Molasses Assimilation, Stress Tolerance, and Trehalose Accumulation of Baker’s Yeast Isolated from Dried Sweet Potatoes (hoshi-imo). Bioscience, Biotechnology, and Biochemistry, 68(7), 1442-1448. http://dx.doi.org/10.1271/bbb.68.1442 DOI: https://doi.org/10.1271/bbb.68.1442

Nolasco, J., & Massaguer, P. R. d. (2007). Thermal death kinetics of B. stearothermophilus spores in sugarcane must. Journal of Food Process Engineering, 30, 625-639. https://doi.org/10.1111/j.1745-4530.2007.00122.x DOI: https://doi.org/10.1111/j.1745-4530.2007.00122.x

Park, M. J., Jo, J. H., Park, D., Lee, D. S., & Park, J. M. (2010). Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. International Journal of Hydrogen Energy, 35, 6194-6202. https://doi.org/10.1016/j.ijhydene.2010.03.135 DOI: https://doi.org/10.1016/j.ijhydene.2010.03.135

Pillai, J. S., Danesh, N., Puttaiah, E. T., & Girish, K. (2011). Microbial diversity in solid waste molasses of Sugar Industry, Aranthangi, Tamilnadu. International Journal of Environmental Sciences, 2(2), 723-730. https://www.semanticscholar.org/paper/Microbial-diversity-in-solid-waste-molasses-of-Pillai-Danesh/7565b2e1b578cc093675a4eb42517d7 d67a0cf56

Ponce, G. H. S. F., Miranda, J. C. C., Filho, R. M., Andrade, R. R. d., & Wolf, M. R. M. (2015). Simulation, Analysis and Optimization of Sugar Concentration in an In Situ Gas Stripping Fermentation Process for Bioethanol Production. Chemical Engineering Transactions, 43, 319-324. https://doi.org/10.3303/CET1543054

Portilla, O. M., Espinosa, V., Jarquin, L., Salinas, A., Velazquez, G., & Vazquez, M. (2017). Sugar cane molasses as culture media component for microbial transglutaminase production. Indian Journal of Biotechnology, 16, 419-425. https://nopr.niscpr.res.in/bitstream/123456789/43327/1/IJBT%2016%283%29%20419-425.pdf

Raharja, R., Murdiyatmo, U., Sutrisno, A., & Wardani, A. K. (2019). Bioethanol production from sugarcane molasses by instant dry yeast. IOP Conf. Series: Earth and Environmental Science, 230, 012076. https://doi.org/10.1088/1755-1315/230/1/012076 DOI: https://doi.org/10.1088/1755-1315/230/1/012076

Rahman, S. S., Hossain, M., & Choudhury, N. (2013). Effect of Various Parameters on the Growth and Ethanol Production by Yeasts Isolated from Natural Sources. Bangladesh J Microbiol, 30(182), 49-54. https://doi.org/10.3329/bjm.v30i1-2.28453 DOI: https://doi.org/10.3329/bjm.v30i1-2.28453

Rani, S., Amin, A., Khaliq, A., Batool, A., Khan, F. S., Hamid, A., & Akram, M. (2024). Isolation and screening of yeast strains for bioethanol production using sugar molasses and lignocellulose biomass. Journal of Population Therapeutics & Clinical Pharmacology, 31(3), 1416-1429. https://doi.org/10.53555/jptcp.v31i3.4953 DOI: https://doi.org/10.53555/jptcp.v31i3.4953

Rasmey, A.-H. M., Hawary, H., Wahid, O. A. A., & Wahid, O. A. A. (2018). Enhancing Bioethanol Production from Sugarcane Molasses by Saccharomyces cerevisiae Y17. Egyptian Journal of Botany, 58(3), 547-561. https://ejbo.journals.ekb.eg/article_13980_ff3a583f1b637753ce5b30922fe1c4f5.pdf DOI: https://doi.org/10.21608/ejbo.2018.1820.1126

Reed, G., & Nagodawithana, T. W. (1991). Yeast Technology. New York, Van Nostrand Reinhold. https://link.springer.com/book/10.1007/978-94-011-9771-7

Reheem, A. H. A., Kenawi, M. A., Ali, H. M., & Hussien, S. M. (2021). Physicochemical Evaluation of Sugarcane Molasses (Black Honey) during Storage in Various Packaging Materials. Asian Journal of Applied Chemistry Research, 10(3-4), 66-72. https://doi.org/10.9734/AJACR/2021/v10i3-430242 DOI: https://doi.org/10.9734/ajacr/2021/v10i3-430242

Ren, N., Li, J., Li, B., Wang, Y., & Liu, S. (2006). Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. International Journal of Hydrogen Energy, 21, 2147-2157. https://doi.org/10.1016/j.ijhydene.2006.02.011 DOI: https://doi.org/10.1016/j.ijhydene.2006.02.011

Sadik, M. W., & Halema, A. A. (2014). Production of Ethanol from Molasses and Whey Permeate Using Yeasts and Bacterial Strains. International Journal of Current Microbiology and Applied Sciences, 3(3), 804-818. https://tarjomefa.com/wp-content/uploads/2018/10/TarjomeFa-F1122-English.pdf

Salem, S. H., Heikal, Y. A., Naguib, M. M., & El-Sheikh, H. H. (2017). Establishment of a Sterilization Regime for Sugarcane Molasses Used in Baker’s Yeast Production. American Journal of Food Technology, 12(2), 106-115. https://doi.org/10.3923/ajft.2017.106.115 DOI: https://doi.org/10.3923/ajft.2017.106.115

Santos, R. A. d., Almeida, Y. M. B. d., Andrade, S. A. C., & Caldas, C. S. (2024). Ethanol production from sugarcane molasses: effects of pH, supplementation, and refrigeration in simulated industrial conditions at a microdistillary. Revista de Gestão Social e Ambiental, 18(11), 1-16.https://doi.org/10.24857/rgsa.v18n11-090 DOI: https://doi.org/10.24857/rgsa.v18n11-090

Scoma, A., Coma, M., Kerckhof, F., Boon, N., & Rabaey, K. (2017). Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin. Biotechnology for Biofuels, 10(1), 23. https://doi.org/10.1186/s13068-017-0701-8 DOI: https://doi.org/10.1186/s13068-017-0701-8

Sharma, P., Kumar, S. Y., & Shukla, A. (2018). Potential of Ethanol Production Using Molasses Fermentation in a Sugar Plant. Iranian Journal of Energy and Environment, 9(4), 235-238. https://www.ijee.net/article_81158_48d8caac8a7d204476ceab4e0af4bd4a.pdf

Sun, Y., Xu, Z., Zheng, Y., Zhou, J., & Xiu, Z. (2019). Efficient production of lactic acid from sugarcane molasses by a newly microbial consortium CEE-DL15. Process Biochemistry, 81, 132-138. https://doi.org/10.1016/j.procbio.2019.03.022 DOI: https://doi.org/10.1016/j.procbio.2019.03.022

Taskin, M., Ortucu, S., Unver, Y., Tasar, O. C., Ozdemir, M., & Kaymak, H. C. (2016). Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Safety and Environmental Protection, 103, 136-143. http://dx.doi.org/10.1016/j.psep.2016.07.006 DOI: https://doi.org/10.1016/j.psep.2016.07.006

Teclu, D., Tivchev, G., Laing, M., & Wallis, M. (2009). Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria. Journal of Hazardous Materials, 161(2-3), 1157-1165. https://doi.org/10.1016/j.jhazmat.2008.04.120 DOI: https://doi.org/10.1016/j.jhazmat.2008.04.120

Thanapornsin, T., Sanchanda, P., Laopaiboon, L., & Laopaiboon, P. (2018). Batch butanol fermentation from sugarcane molasses integrated with a gas stripping system: Effects of sparger types and gas flow rates. Asia-Pacific Journal of Science and Technology, 23(04), 1-12. https://doi.org/10.14456/apst.2018.13

Thanapornsin, T., Sirisantimethakom, L., Laopaiboon, L., & Laopaiboon, P. (2022). Effectiveness of Low-Cost Bioreactors Integrated with a Gas Stripping System for Butanol Fermentation from Sugarcane Molasses by Clostridium beijerinckii. Fermentation, 8, 214. https://doi.org/10.3390/fermentation8050214 DOI: https://doi.org/10.3390/fermentation8050214

Thomas, K. C., Hynes, S. H., & Ingledew, W. M. (2001). Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. Journal of Applied Microbiology, 90(5), 819-828. https://doi.org/10.1046/j.1365-2672.2001.01311.x DOI: https://doi.org/10.1046/j.1365-2672.2001.01311.x

Tyagi, N., & Suresh, S. (2016). Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. Journal of Cleaner Production, 112, 71-80. http://dx.doi.org/10.1016/j.jclepro.2015.07.054 DOI: https://doi.org/10.1016/j.jclepro.2015.07.054

Veana, F., Martínez-Hernández, J. L., Aguilar, C. N., Rodríguez-Herrera, R., & Michelena, G. (2014). Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Brazilian Journal of Microbiology, 45(2), 373-377. https://doi.org/10.1590/s1517-83822014000200002 DOI: https://doi.org/10.1590/S1517-83822014000200002

Vidra, A., Tóth, A. J., & Németh, Á. (2017). Lactic acid production from cane molasses. Liquid Waste Recovery, 2, 13-16. https://doi.org/10.1515/lwr-2017-0003 DOI: https://doi.org/10.1515/lwr-2017-0003

Wang, S., Tian, R., Liu, B., Wang, H., Liu, J., Li, C., Li, M., Evivie, S. E., & Li, B. (2021). Effects of carbon concentration, oxygen, and controlled pH on the engineering strain Lactiplantibacillus casei E1 in the production of bioethanol from sugarcane molasses. AMB Express, 11, 95. https://doi.org/10.1186/s13568-021-01257-x DOI: https://doi.org/10.1186/s13568-021-01257-x

Wardani, A. K., Utami, C. P., Hermanto, M. B., Sutrisno, A., & Nurtyastuti, F. (2023). Bioethanol Production from Sugarcane Molasses by Fed-Batch Fermentation Systems Using Instant Dry Yeast. Microbiology and Biotechnology Letters, 51(2), 184-190. http://dx.doi.org/10.48022/mbl.2301.01012 DOI: https://doi.org/10.48022/mbl.2301.01012

Watthanasakphuban, N., Nguyen, L. V., Che, Y.-S., Show, P.-L., Sriariyanun, M., Koffas, M., & Rattanaporn, K. (2023). Development of a Molasses-Based Medium for Agrobacterium tumefaciens Fermentation for Application in Plant-Based Recombinant Protein Production. Fermentation, 9, 149. https://doi.org/10.3390/fermentation9020149 DOI: https://doi.org/10.3390/fermentation9020149

Wechgama, K., Laopaiboon, L., & Laopaiboon, P. (2017). Enhancement of batch butanol production from sugarcane molassesusing nitrogen supplementation integrated with gas stripping for product recovery. Industrial Crops and Products, 95, 216-226. http://dx.doi.org/10.1016/j.indcrop.2016.10.012 DOI: https://doi.org/10.1016/j.indcrop.2016.10.012

Yapo, A., Achi, M. A., Djeni, T., Gadji, A. G., Coulibaly, J., Gnepe, R., . . . Tyagi, R. (2020). Use of Sugar Cane Molasses Enriched with Yeast Extract for the Production of Biopesticide from Bacillus thuringiensis var. kurstaki HD-1. International Journal of Current Microbiology and Applied Sciences, 9(11), 3590-3599. doi:https://doi.org/10.20546/ijcmas.2020.911.430 DOI: https://doi.org/10.20546/ijcmas.2020.911.430

Zaghloul, R. A., Ismail, S. A., Enan, G., El-Meihy, R. M., & Abdel-Rahman, H. M. (2021). Maximization of Bio-Ethanol Production by Yeasts using Sugar Cane and Sugar Beet Molasses. Advances in Animal and Veterinary Sciences, 9(12), 2069-2076. http://dx.doi.org/10.17582/journal.aavs/2021/9.12.2069.2076 DOI: https://doi.org/10.17582/journal.aavs/2021/9.12.2069.2076

Zakeri, A., Pazouki, M., & Vossougi, M. (2015). Kinetics investigation of cell growth, xanthan production and sugar cane molasses consumption by Xanthomonas campestris. Iranian Journal of Chemical Engineering, 12(4), 84-92. https://www.ijche.com/article_15368.html

Zhang, S., Wang, J., & Jiang, H. (2021). Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chemistry, 346, 128860. https://doi.org/10.1016/j.foodchem.2020.128860 DOI: https://doi.org/10.1016/j.foodchem.2020.128860

Zohri, A. E.-N. A., Soliman, M. F., Ibrahim, O. M., & Aziz, A. M. A. (2022). Reducing heavy metals content in sugarcane molasses and its effect on ethanol fermentation efficiency. Egyptian Sugar Journal, 18, 60-67. https://doi.org/10.21608/ESUGJ.2022.143054.1011 DOI: https://doi.org/10.21608/esugj.2022.143054.1011

Zohri, A. N. A., Saliman, F. M., Ibrahiem, O. M., & Aziz, A. M. A. (2022). Deterioration of sugarcane molasses during storage and its effect on ethanol fermentation efficiency in distillery factories. Egyptian Sugar Journal, 18, 32-39. https://doi.org/10.21608/ESUGJ.2022.125012.1004 DOI: https://doi.org/10.21608/esugj.2022.128090.1006

Descargas

Publicado

2025-04-30

Cómo citar

Pérez-Sánchez, A., González-Ibarra, N., Segura-Silva, R. M., & Alcalá-Galiano-Morell, D. D. (2025). Composición química, pretratamiento, almacenamiento, esterilización y usos de la melaza como sustrato en fermentaciones: Una revisión global. Horizon Nexus Journal, 3(2), 36-89. https://doi.org/10.70881/hnj/v3/n2/59

Artículos similares

1-10 de 55

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >>